

Automated Extraction and GC/MS Determination of Phthalates in Consumer Products

Fredrick D. Foster, John R. Stuff, Jacqueline A. Whitecavage, Edward A. Pfannkoch *GERSTEL, Inc., 701 Digital Dr. Suite J, Linthicum, MD 21090, USA*

Keywords

GC/MS, Lab Automation, Sample Preparation, Polymers and Plastics, Toys, Toy Safety, Child Care Articles

Abstract

The US Consumer Product Safety Commission's (CPSC) Test Method CPSC-CH-C1001-09.3 [1], is used by testing laboratories for the determination of phthalate content in children's toys and child care articles covered by the standard set forth in the Consumer Product Safety Improvement Act Section 108. The CPSC determined that an appropriate combination of methods of extraction and analysis is sufficient to determine the concentration of the six regulated phthalates in most consumer products. The general manual approach is to dissolve the sample completely in tetrahydrofuran, precipitate any PVC polymer with hexane, filter and then dilute the solution with cyclohexane, and analyze by Gas Chromatography-Mass Spectrometry (GC-MS).

A combined autosampler and sample preparation robot commonly used for sample introduction in GC or HPLC can be used to perform a wide variety of sample preparation techniques using a single instrument set-up and associated control software. Among the autosampler capabilities controlled by MAESTRO software are filtration and centrifugation, both of which can be used to clean up polymer extracts for further analysis. The autosampler can be configured as part of a GC or LC system or can be used independently as benchtop workstation.

In this work, we demonstrate automated extraction of phthalates in consumer products based on CPSC method CPSC-CH-C1001-09.3 directly combined with GC-MS analysis of the extract. The entire extraction and analysis process is streamlined and helps reduce or eliminate exposure of laboratory personnel to potentially hazardous materials.

INTRODUCTION

Most polymer materials contain uniformly distributed additives that are used to alter the chemical or physical properties. For example, plasticizers, such as phthalates, can be added to polymers to make the final product more pliable. However, since the plasticizers are not chemically bonded to the polymeric material, they could potentially migrate into food or water or be inadvertently ingested through human contact.

Some phthalates have been found to have undesired toxicological effects. For this reason, the US Congress has permanently banned three types of phthalates (DEHP, DBP, BBP) and also banned (on an interim basis) three additional types of phthalates (DINP, DIDP, DnOP) in any amount greater than 0.1 percent (computed for each phthalate, individually) in children's toys and certain child care articles.. In order to ensure compliance with governmental health and safety regulations, it is necessary to monitor products for these compounds.

The sample preparation of polymers being monitored for their respective additives, is an important part of the overall analysis. The manual extraction procedures employed are often the rate-determining step and involve the use of hazardous chemicals and solvents. Typically, liquid dissolution of the polymer is first performed in order to release the compounds of interest located within the sample. A solvent, in which the polymer is not soluble, is then normally added to precipitate the polymer and leave the analytes of interest in solution. Filtration of the final extract is then performed prior to analysis by either GC or HPLC.

This general procedure can be applied to a wide variety of polymers and plastics. In this paper we show that the manual procedure established for the extraction of phthalates from consumer products comprised of polyvinylchloride (PVC) is easily automated using the GERSTEL MultiPurpose Sampler (MPS). The entire process is conveniently controlled using the MAESTRO software.

EXPERIMENTAL

Materials. A standard containing bis(2ethylhexyl)phthalate, dibutyl phthalate, di-n-octyl phthalate, diisodecyl phthalate, diisononyl phthalate, and benzyl butyl phthalate at 1 mg/mL in cyclohexane was purchased from AccuStandard (#APP-9-PHTH-MIX). All solvents used were reagent grade or better.

A certified reference material sample consisting of the phthalates listed within method CPSC-CH-C1001-09.3 in a polyethylene matrix (CRM-PE001) was purchased from SPEX CertiPrep. This standard consists of diisodecyl phthalate (DIDP) and diisononyl phthalate (DINP) at concentrations of 30 mg/g and bis(2-ethylhexyl)phthalate (DEHP), butylbenzyl phthalate (BBP), diethyl phthalate, dimethyl phthalate, di-n-butyl phthalate (DBP), and di-n-octyl phthalate (DnOP) at 3 mg/g.

An generic, no-name toy duck product for small children was purchased from a local market. Three unknown (CPSC-1, CPSC-2, CPSC-3), incurred polyvinyl chloride samples were donated by a local CPSC testing facility. All polyvinyl chloride samples extracted were first cut into small pieces no larger than 2 mm and then weighed into glass 10 mL screw top vials and then placed onto the appropriate autosampler tray.

PTFE syringe filters, 17 mm, 0.45 μ m, (Varian #A4170) in the GERSTEL syringe filtration format, were placed onto the appropriate autosampler tray.

Instrumentation. Automated extraction, clean-up, and introduction to the GC/MS system was performed using a MultiPurpose Sampler (MPS XL) in dual head configuration with a six position heated agitator, 2.5 mL ALEX syringe, and GERSTEL Syringe Filtration Option as shown in Figure 1. Analyses were performed using on a 7890 GC equipped with a 5975C Inert XL MSD with triple axis detector (Agilent Technologies), PTV inlet (CIS 4, GERSTEL). The MPS XL was fitted with a 10 µL liquid syringe for liquid introduction to the GC/MS.

Figure 1. GERSTEL MultiPurpose Sampler (MPS XL) with Syringe Filtration Option.

Analysis conditions.

r mary sis con	artions.
PTV:	baffled liner
	split (20:1) or splitless
	50°C; 12°C/s; 280°C (3 min)
Column:	30 m HP-5MS (Agilent)
	$d_i = 0.25 \text{ mm}$ $d_f = 0.25 \mu \text{m}$
Pneumatics:	He, constant flow = 1.0 mL
Oven:	50°C (1 min); 20°C/min;
	310°C (5 min)
MSD:	Full scan, 40-350 amu
SIM Parame	ters (Mass, Dwell):
	Group 1: 5 min
	(91, 10), (105, 10), (149, 10), (167, 10),
	(194, 10), (194, 10), (205, 10), (212, 10),
	(223, 10)
	Group 2: 11.7 min
	(91, 10), (149, 10), (167, 10), (206, 10),
	(279, 10)
	Group 3: 13.7 min
	(149, 10), (167, 10), (261, 10), (279, 10),

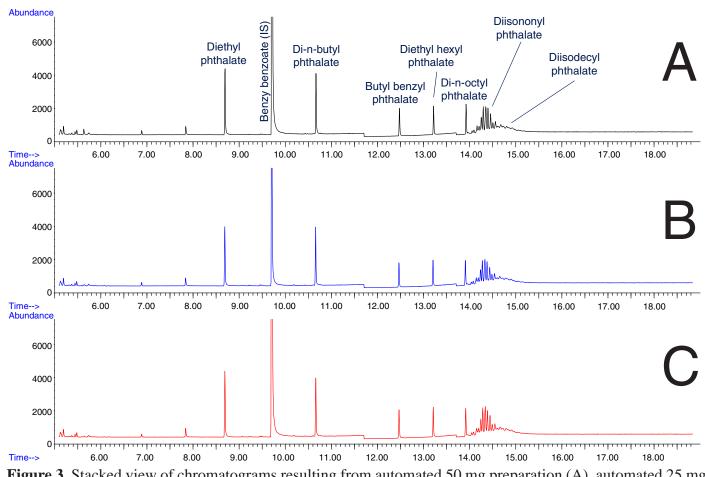
(293, 10), (307, 10)

Standard preparation. From the stock standard, a set of standards was prepared for the low level calibration curve covering the range from 50-1000 ng/mL and a set of standards was prepared for the high level calibration covering the range from 5-100 μ g/mL.

RESULTS AND DISCUSSION

The manual steps in the Test Method CPSC-CH-C1001-09.3 [1] include:

- 1. Weigh a 50 mg sample of polyvinyl chloride into a sealable glass vial.
- 2. Add 5 mL of THF to the sample.
- 3. Shake, stir, or mix the sample for at least 30 minutes to complete the dissolution. Sonication and/or gentle heating may be used to expedite dissolution. If the material is not completely dissolved, extend the mixing time for an additional 2 hours before proceeding.
- 4. Precipitate any PVC polymer with 10 mL of hexane for every 5 mL of THF used during dissolution.
- 5. Shake and allow at least 5 minutes for the polymer to settle.
- 6. Filter the THF/hexane solution through a 0.45 mm PTFE filter, collecting a few mL of filtered solution into a separate vial.
- Combine 0.3 mL of the THF/hexane solution with 0.2 mL of internal standard (if used), and dilute to 1.5 mL using cyclohexane.
- 8. $1 \ \mu L$ is injected for GC/MS analysis.


As shown in Figure 2, the manual liquid-liquid extraction was easily translated into a MAESTRO Prep Sequence and was demonstrated to successfully prepare sample extracts for subsequent analysis by GC/MS.

We first determined that the solvents being used during the extraction were free of phthalates by taking an empty vial through the entire extraction procedure without adding a polymer sample. The resulting extract was then analyzed using the GC/MS method. No phthalates were detected from the extracted blank solvent sample.

The certified reference material samples were taken through the manual extraction procedure steps and the analysis results compared to those obtained for the same certified reference material sample extracted automatically using the MAESTRO Prep Sequence. Figure 3 shows a comparison of the results obtained using manual and automated sample preparation. The chromatograms show that performing automated liquid-liquid extraction does not adversely affect the resulting analysis of the extract.

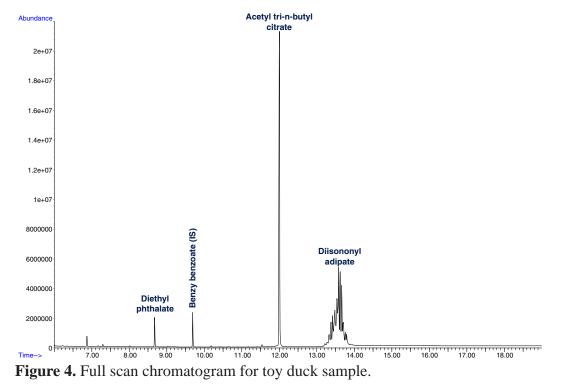
Action MPS Method / Value Source Vial Destination Vial PREP Vals 1-3 Ahead, Extensive Frequencing of sample vial for extension Tray1.VT32-10 Tray1.VT32-10 CADD Left MPS Add 25m, of Tample SolvRest Tray1.VT32-10 Tray1.VT32-10 MOVE Left MPS Madd 25m, of Tample SolvRest Tray1.VT32-10 Addatol.AgT ray MK Left MPS Madd Solution Add SmL of Thesame to sample SolvRest Tray1.VT32-10 MMX Left MPS Madd Solution Add SmL of Thesame to sample SolvRest Tray1.VT32-10 MMX Left MPS Madd Solution Add SmL of Tamate Addatol.AgT ray Addatol.AgT ray MMX Left MPS Madd Solution Tray1.VT32-10 Addatol.AgT ray Addatol.AgT ray MMX Left MPS Madd Solution Tray1.VT32-10 Addatol.AgT ray Addatol.AgT ray MMX Left MPS GET FeerT1F112.PLT Full MIT112.PLT Full MIT112.PLT V=RUTER Left MPS File 5000.L of Intered sample into final vial Full PLT12.PLT Full MIT138F V=RUTER Left MPS Tray1.VT32-10 PLTEMILET38FLT Full PLT13.PLT V=RUTER Left MPS Fi	ep. Settings									
rev. Action Spring: Spring: Spring: Spring	⊻ial Range 1	13								
Adia PEP Adad Method Alexed, Edencine - Prep Alexed as for a sportable of the gene Description Generation Add I of the Source of the Description Add I of the Source of the Sou	_									
Meteod Keteodine - Prope Alead as far as possible 	ep. Action Se	ttings	Syringe: 2.5mIALX							
Source	Action	- PREP	MPS Left MPS							
Source	Mathed 7	shood Eutopoise. Prop Al		Edit Now Dola	-					
Source via Alton Destination via Alton 4 dd **********************************	Turcanoa La	anoda, Exteriaire i repiar								
Image: Sector			Description							
Add Image: Control of the second of the	Source		Vial AUTO							
Add Image: Control of the second of the										
Action MPS Method / Value Source Vial Destination Vial PFEP Valis 1-3 Abed. Extensive Frequencino 1 sample vial of restruction Trayl VT32-10 Trayl VT32-10 ADD Left MPS Add 25mL of THF to sample SolvFer1 Trayl VT32-10 Aglator AgTray MVX Left MPS Mdd 5mL of THF to sample SolvFer1 Trayl VT32-10 Aglator AgTray MK Left MPS Mdd 5mL of hexare to sample SolvFer2 Trayl VT32-10 Aglator AgTray MK Left MPS Add 5mL of hexare to sample SolvFer2 Trayl VT32-10 Aglator AgTray MK Left MPS Add 5mL of hexare to sample SolvFer2 Trayl VT32-10 Aglator AgTray MK Left MPS Mix 5 minutes Aglator AgTray Trayl VT32-10 Aglator AgTray MK Left MPS Kit 5 minutes Aglator AgTray Trayl VT32-10 Frequence Aglator AgTray MVE Left MPS GET Filter 112-FILT Filter 112-FILT Filter 112-FILT MVE Left MPS Filter 500L of sample Trayl VT32-10 Filter 112-FILT MVE Left MPS Filter 500L of sample Trayl VT32-10 Filter 1111/173-FILT MOE Left MPS Add 750L	Destination		Vial AUTU							
Action MPS Method / Value Source Val Destination Val = PRE Plais 1-3	Add	En Inset	enlace							😥 Cie
PREP Vials 1-3 Abead, Extensive	- 200	E Tupor								
PRCP Vials 1-3 Ahead, Extensive										
B ADD Left MPS Preparation of sample vial for extraction Tray1/VT32.10 B ADD Left MPS Add 2.5m. of TH for sample SolvRes1 Tray1/VT32.10 M MVE Left MPS Mix 30 minutes Tray1/VT32.10 Apilator.AgiT ray M MVE Left MPS Add 55m. of Thesane to sample SolvRes2 Tray1/VT32.10 M ADD Left MPS Add 55m. of Thesane to sample SolvRes2 Tray1/VT32.10 M MVE Left MPS Mix 5 minutes Tray1/VT32.10 Apilator.AgiT ray M MVE Left MPS Mix 5 minutes Tray1/VT32.10 Apilator.AgiT ray M MVE Left MPS Mix 5 minutes Tray1/VT32.10 Apilator.AgiT ray M MVE Left MPS Mix 5 minutes Tray1/VT32.10 Left MPS If TETER Left MPS Filter TST TLAY Tray1/VT32.10 FLTELAT If PIETER Left MPS Piet TST TLAY FLTELAT FLTELAT If PIETER Left MPS Add 100.L of Inst vial Tray1/VT32.10 SLTELAT FLTELAT If PIETER Left MPS Add 100.L of Inst vial Tray1/VT32.10 SLTIN1/VT38F				Source	Vial	Destination	Vial			
SADD Left MPS Add 25mL of THF to sample SolvRes1 Tray1.VT32:10 MOVE Left MPS Tray1.VT32:10 Aghtaor.AgiTray MOVE Left MPS Add 5mL of hexane to sample SolvRes2 Tray1.VT32:10 MOVE Left MPS Add 5mL of hexane to sample SolvRes2 Tray1.VT32:10 MOVE Left MPS Mix 5 minutes Tray1.VT32:10 MOVE Left MPS Mix 5 minutes Tray1.VT32:10 MOVE Left MPS Mix 5 minutes Tray1.VT32:10 MOVE Left MPS GET Filter 11.FT12.FLT Vir FILTER Left MPS Filter 500.L. of filtered sample into final vial FILT1.FT12.FLT Vir FILTER Left MPS Filter 500.L. of filtered sample into final vial FLT111.YT39F +56 ADD Left MPS Add 100.d. cl InSid into final vial SolvRes3 FLT1nj1.VT39F +56 ADD Left MPS Add 750.d. of cyclohexane into final vial SolvRes3 FLTInj1.VT39F +56 ADD Left MPS Add 750.d. of cyclohexane into final vial SolvRes3 FLTInj1.VT39F +56 ADD Left MPS				Trau1 VT32.10		Trau1 VT32.10				
MOVE Left MPS Mix 30 minutes MOVE Left MPS Add Sminutes Tray1,VT32:10 MOVE Left MPS Mix 5 minutes Tray1,VT32:10 MOVE Left MPS Move Set Aglator,AgiTray Tray1,VT32:10 MOVE Left MPS GET Patter Tray1,VT32:10 MOVE Left MPS GET Filer T1,FT12,FLT Filer T1,FT12,FLT U+FILTRATIE Left MPS Filer S00uL of scapele Tray1,VT32:10 Filer T1,FT12,FLT U+FILTRATIE Left MPS Tray1,VT32:10 Filer T1,FT12,FLT Filer T1,FT12,FLT U+FILTRATIE Left MPS Add T00 Lot InSt divio final vial FILTriy1,VT39F FIG 200 Left MP										
● MiX Left MPS Mix 30 minutes Agkator,AgiTray Tray1,VT32:10 ● MOVE Left MPS Add 5mL of hexane to sample SoVMes2 Tray1,VT32:10 ● MOVE Left MPS Add 5mL of hexane to sample SoVMes2 Tray1,VT32:10 ● MOVE Left MPS Tray1,VT32:10 Agkator,AgiTray ● MOVE Left MPS Mix 5 minutes Tray1,VT32:10 ● MOVE Left MPS Mix 5 minutes Tray1,VT32:10 ● MOVE Left MPS Wak 5 minutes Tray1,VT32:10 ● MOVE Left MPS GET Filter 11,FT12,FLT U = FILTER Left MPS Filter 500L of sample Tray1,VT32:10 U = FILTER Left MPS Filter 500L of sample Tray1,VT32:10 U = FILTER Left MPS Filter 500L of filtered sample into final vial FLTInj1,VT39F ▲ ADD Left MPS Add 150uL of cyclohexane into final vial Tray1,VT32:10 2 ▲ ADD Left MPS Add 750uL of cyclohexane into final vial SotMRes3 FLTInj1,VT39F +56 ▲ ADD Left MPS Add 750uL of cyclohexane into final vial SotMRes3 FLTInj1,VT39F </th <th></th>										
MOVE Left MPS Add 5mL of hexane to sample SolvPies2 Tray1/VT3210 MOVE Left MPS Add 5mL of hexane to sample SolvPies2 Tray1/VT3210 MOVE Left MPS Mix 5 minutes Aplator AgTray Tray1/VT3210 MK Left MPS Mix 5 minutes Tray1/VT3210 Aplator AgTray MVK Left MPS Mix 5 minutes Tray1/VT3210 Aplator AgTray MVT Left MPS Wat 5 minutes Tray1/VT3210 FileT1/FT12/FLT Um FILTER Left MPS GET 500L of sample Tray1/VT3210 FLTe/T1/FLT Um FILTER Left MPS FileT00L of filered sample into final vial Tray1/VT3210 FLTe/T1/FLTS Um FILTER Left MPS Protein 500L of filered sample into final vial Tray1/VT3210 S2 FLTin/T1/T39F +56 SADD Left MPS Add 7500L of cyclohexane into final vial Tray1/VT3210 S2 FLTin/T1/T39F +56 SADD Left MPS Add 7500L of cyclohexane into final vial SolvPies3 FLTin/T1/T39F +56 E ND FLTin/T1/T39F +56 FLTin/T1/T39F +56 <th></th> <th></th> <th>Mix 30 minutes</th> <th>nay to the to</th> <th></th> <th>righterer griney</th> <th></th> <th></th> <th></th> <th></th>			Mix 30 minutes	nay to the to		righterer griney				
ADD Left MPS Add 5mL of hexane to sample SolvRes2 Troj [VT3210 MOVE Left MPS Transfer TS0L of angle Tray UT3210 MOVE Left MPS GET Aglator AgiTray Tray1,VT3210 WAIT Left MPS GET Aglator AgiTray Tray1,VT3210 WAIT Left MPS GET Filer T1,FT12,FLT U,FILTRATE Left MPS Filer 500L of sample Tray1,VT3210 FLTELx1,ET39,FLT U,FILTRATE Left MPS PUT FLTWate ADD Left MPS Transfer 150L of filered sample into final vial FLTIng1,VT39,F FLTIng1,VT39,F +56 aDD Left MPS Add 150L of rcyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 aDD Left MPS Add 150L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLTIng1,VT39,F +56 = ADD Left MPS Add 750L of cyclohexane into final vial SolvRes3 FLT			inin do minaco	Agitator AgiTray		Trau1 VT32-10				
MOVE Left MPS Left MPS Tray1,VT3210 Agitator,AgiTray MOVE Left MPS Mis 5 minutes Tray1,VT3210 Tray1,VT3210 MOVE Left MPS GET Filer 11,FT12,FLT Tray1,VT3210 FLTER Left MPS GET Filer 11,FT12,FLT Up FLITER Left MPS Filer 500L of sample Tray1,VT3210 FLTVates FLTVates Left MPS Formater 150LL of filtered sample into final vial FLTIng1,VT38F +56 Q ADD Left MPS Add 100uL of InStd into final vial Tray1,VT3210 32 FLTIng1,VT38F +56 Q ADD Left MPS Add 750uL of cyclohexane into final vial SolvRies3 FLTing1,VT38F +56 END MOVE Left MPS Add 750uL of cyclohexane into final vial SolvRies3 FLTing1,VT38F +56			Add 5mL of bexare to sample							
MK Left MPS Mix 5 minutes • MOVE Left MPS Mait 5 minutes • MOVE Left MPS Walt 5 minutes • MOVE Left MPS Walt 5 minutes • MILTER Left MPS GET Filer 11/112/LLT ↓ FILTER Left MPS GET Filer 100.0L of sample Tray1.VT32:10 ↓ FILTER Left MPS Filer 500.0L of sample Tray1.VT32:10 FLTMix1E T98/FLT ↓ FILTER Left MPS Filer 500.L of filered sample into final vial FLTmi;1/198/F FLTmi;1/198/F +56 △ ADD Left MPS Add 750.uL of cyclohexane into final vial Tray1.VT32:10 32 FLTmi;1/T38/F +56 △ ADD Left MPS Add 750.uL of cyclohexane into final vial SolvRies3 FLTni;1/T38/F +56 ▲ ADD Left MPS Add 750.uL of cyclohexane into final vial SolvRies3 FLTni;1/T38/F +56 ▲ ADD Left MPS Add 750.uL of cyclohexane into final vial SolvRies3 FLTni;1/T38/F +56 ■ END ■ END ■ END ■										
 MOVE Leit MPS Val Sminutes FILTER Let MPS BiterT1.FT12.FLT FLTEINTE Leit MPS Difference Tray1.VT32.10 FLTEINTE Leit MPS BiterT1.FT12.FLT FLTEINTE Leit MPS Piller T000L of sample Tray1.VT32.10 FLTEINTE Leit MPS Piller T000L of filtered sample into final vial FLTInj1.VT39F			Mix 5 minutes							
Walt Left MPS Walt formules Implifier Left MPS GET Filer11,FT12,FLT Umplifier Left MPS Filer6200.L of sample Tray1,VT3210 Umplifier Left MPS Filer6200.L of sample Tray1,VT3210 Umplifier Left MPS Filer6200.L of sample Filer6200.L of the sample into final vial Umplifier Left MPS Transfer 150LL of filered sample into final vial FLTInj1,VT39F +56 Implifier ADD Left MPS Add 100.L of InStot into final vial Tray1,VT3210 32 FLTInj1,VT39F +56 Implifier ADD Left MPS Add 750.uL of cyclohexane into final vial SolvPies3 FLTInj1,VT39F +56 Implifier ADD Left MPS Add 750.uL of cyclohexane into final vial SolvPies3 FLTInj1,VT39F +56 Implifier Left MPS Filter3 SolvPies3 FLTInj1,VT39F +56				Agitator AgiTrav		Trav1 VT32-10				
Impliture Left MPS GET Filer11F1F14-FLT Uµ FILTER Left MPS Filter 500L of sample Tray1 V132:10 Uµ FILTER Left MPS FILT FILTER Uµ FILTER Left MPS FILT FILTER Uµ FILTER Left MPS FILT FILTATE Uµ FILTER Left MPS FILT FILTER Impliture Left MPS FILT FILTER Impliture Left MPS FILT FILTER Impliture Left MPS FILTER FILTER Impliture Left MPS Transfer 150L of filtered sample into final vial FILTIN1/VT39F +56 Impliture Add 100L of Institution final vial Tray1.VT32:10 32 FILTIN1.VT39F +56 Impliture Add 750L of cyclohexane into final vial SolvPiec3 FILTIN1.VT39F +56 - END - END - END - END - END - END			Wait 5minutes							
ULPILITATE Left MPS Filter 500uL of sample Tray1,VT32-10 FLTEMIJET93FLT Ver FILTER Left MPS PUT FLTVaste ADD Left MPS Transfer 150uL of filtered sample into final vial FLTInj1,VT39F FLTInj1,VT39F +56 ADD Left MPS Add 1750uL of cyclohexane into final vial SolvRes3 FLTInj1,VT39F +56 END				FilterT1.FT12-FLT						
Îve FILTER Lett MPS PUT FLTVaite 當 ADD Lett MPS Transfer 150LL of filtered sample into final vial FLTInji \/T38F FLTinji \/T38F +56 ③ ADD Lett MPS Add 150LL of right vial Transfer 150LL of filtered sample into final vial FLTinji \/T38F +56 ③ ADD Lett MPS Add 750uL of cyclohexane into final vial SolvRies3 FLTinji \/T38F +56 ■ ADD Lett MPS Add 750uL of cyclohexane into final vial SolvRies3 FLTinji \/T38F +56						FLTElut1.ET98-FLT				
BADD Left MFS Transfer 150Ld of filtered sample into final vial FLTin(1)/T99F FLTin(1)/T99F +56 ADD Left MFS Add 100Ld of InStid into final vial Tray1/VT32:10 32 FLTin(1)/T99F +56 ADD Left MFS Add 750Ld of cyclohexane into final vial SolvRes3 FLTin(1)/T99F +56 - END	¥ ¥ FILTER	Left MPS				FLTWaste				
			Transfer 150uL of filtered sample into final vial	FLTInj1,VT98F			+56			
출 ADD Left MPS Add 750uL of cyclohexane into final vial SolvRes3 FLTInq1,VT38F +56 - END					32					
		Left MPS	Add 750uL of cyclohexane into final vial	SolvRes3		FLTInj1,VT98F	+56			
	– END									
OK Cancel									OK <u>C</u> ancel	Hel

Figure 2. MAESTRO Prep Sequence for the automated liquid-liquid extraction procedure.

Figure 3. Stacked view of chromatograms resulting from automated 50 mg preparation (A), automated 25 mg preparation (B), and manual 25 mg preparation (C).

To increase total throughput of the system and avoid excessive use of harmful chemicals, we scaled all amounts of sample and solvents by a factor of 0.5. Also shown in Figure 3, is a comparison of chromatograms of 25 mg and 50 mg of the certified reference material taken through the extraction procedure using automation. The chromatograms show that decreasing the amount of the sample and solvents by 50 %, does not adversely affect the analysis results for the phthalates.

The duck and CPSC samples were run through the automated extraction procedure. The extracts were analyzed by GC/MS using split (20:1) and splitless introduction. The MS was run in SIM/Scan mode. The low level calibration curve was run in splitless mode, the high level calibration curve in split mode. Target analytes were identified based on retention time and mass spectra. The calibration curves were used to quantify the amount of each analyte found in the samples.


Sample CPSC-2 was run in triplicate to assess the precision of the overall analysis. The results are shown in Table 1. Samples CPSC-1 and 2 were found to contain all six target analytes. The replicates for sample CPSC-2 showed good precision with values ranging from 1.9-5.5 % RSD. Sample CPSC-3 shows high levels of DEHP.

Analyte*	DBP % w/w	BBP % w/w	DEHP % w/w	DnOP % w/w	DINP % w/w	DIDP % w/w	Total % w/w
CPSC-2 R1	0.642	0.360	0.252	0.630	0.710	0.304	2.90
CPSC-2 R2	0.586	0.336	0.226	0.575	0.642	0.299	2.66
CPSC-2 R3	0.607	0.342	0.235	0.599	0.664	0.293	2.74
Ave	0.612	0.346	0.238	0.601	0.672	0.299	2.77
%RSD	4.6	3.6	5.5	4.5	5.1	1.9	4.3
Duck	0.025	0.014	0.186		0.065		0.29
CPSC-1	0.121	0.124	0.206	0.111	0.138	0.150	0.85
CPSC-3	0.147	0.010	19.2				19.4

Table 1. Weight percent phthalates found in samples using automated extraction.

*DBP = dibutyl phthalate; BBP = benzyl butyl phthalate; DEHP = di-(2-ethylhexyl) phthalate; DnOP = di-n-octyl phthalate; DINP = 2diisononyl phthalate; DIDP = diisodecyl phthalate.

Figure 4 shows an example full scan chromatogram for the duck sample. The chromatogram shows the advantage of running in SIM/Scan mode as several other non-targeted plasticizers are seen in the chromatogram. These include diethyl phthalate, acetyl tri-n-butyl citrate, and diisononyl adipate.

AN/2013/4-5

Figure 5A shows a full scan chromatogram for sample CPSC-2. Figure 5B shows extracted ion chromatograms of the SIM data. The target analytes are identified in the SIM chromatogram. The full scan chromatogram shows the presence of another compound, diisononyl cyclohexane-1,2-dicarboxylate

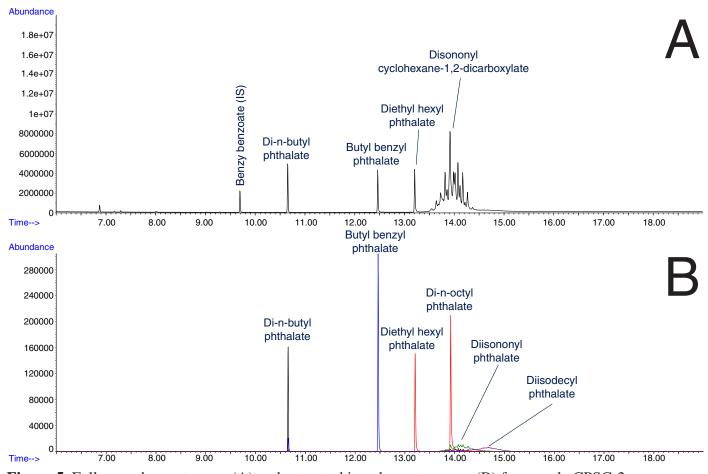


Figure 5. Full scan chromatogram (A) and extracted ion chromatograms (B) for sample CPSC-2.

CONCLUSIONS

As a result of this study, we were able to show:

- A manual liquid-liquid extraction procedure could be transferred to the dual head GERSTEL MultiPurpose Sampler (MPS XL) and fully automated..
- Certified reference material and incurred samples were found to give appropriate results when extracted and analyzed using the automated method.
- The automated liquid extraction GC/MS method proved to be precise with RSDs ranging of 1.9-5.5 % for all phthalates being monitored.
- Phthalates that must be monitored in children's toys and child care articles using Test Method CPSC-CH-C1001-09.3 can be determined in relevant samples using the automated extraction and GC/MS analysis method.

REFERENCES

 United States Consumer Product Safety Commission, Test Method: CPSC-CH-C1001-09.3 Standard Operating Procedure for Determination of Phthalates, April 1st, 2010.

GERSTEL GmbH & Co. KG

Eberhard-Gerstel-Platz 1 45473 Mülheim an der Ruhr Germany +49 (0) 208 - 7 65 03-0
+49 (0) 208 - 7 65 03 33
@ gerstel@gerstel.com

www.gerstel.com

GERSTEL Worldwide

GERSTEL, Inc.

701 Digital Drive, Suite J Linthicum, MD 21090 USA

- +1 (410) 247 5885
- 📇 +1 (410) 247 5887
- @ sales@gerstelus.com
- www.gerstelus.com

GERSTEL LLP

Level 25, North Tower One Raffles Quay Singapore 048583 +65 6622 5486 +65 6622 5999 Ø SEA@gerstel.com www.gerstel.com

GERSTEL AG

Wassergrabe 27 CH-6210 Sursee Switzerland ☎ +41 (41) 9 21 97 23 ➡ +41 (41) 9 21 97 25 @ swiss@ch.gerstel.com ➡ www.gerstel.ch

GERSTEL Brasil

GERSTEL K.K.

Awarded for the active pursuit of environmental sustainability

Information, descriptions and specifications in this Publication are subject to change without notice. GERSTEL, GRAPHPACK and TWISTER are registered trademarks of GERSTEL GmbH & Co. KG.

© Copyright by GERSTEL GmbH & Co. KG